Global warming potential of Swiss arable and forage production systems

Thomas Nemecek
Agroscope Reckenholz-Tänikon Research Station ART
Zurich, Switzerland

Organic agriculture and climate change, Clermont-Ferrand 17 April 2008

Overview

• LCA methodology
• Impacts of organic and integrated farming on global warming:
 ➢ Farming system experiments
 - DOC
 - Burgrain
 ➢ Arable crops
 ➢ Forage production systems
• Conclusions
Life cycle assessment (LCA): characteristics

- Life cycle assessment: „from cradle to grave“ (or farm gate)
- Environmental management tool:
 - Process optimisation („hot spots“)
 - Choice of the best option (comparative LCA)
- Comprehensive assessment of environ. impacts:
 - Energy demand, global warming, ozone formation, eutrophication, acidification, ecotoxicity, human toxicity, biodiversity, soil quality
- Potential environmental impacts assessed by models
- Environmental impacts related to functional units:
 - 1 ha*year for function “land management”
 - 1 kg dry matter of main products for productive function
 - 1 currency unit for the financial function

System description

Infrastructure: Buildings, Machinery
Field production: Soil cultivation, Fertilisation, Crop rotation, Chemical plant protection, Management, Harvest, Transport
System boundary: Manure storage
Inputs: Seed, Fertilisers (min. & org.), Pesticides, Energy carriers, Irrigation water
Products: Slope maize, Sugar beets, Fodder beets, Barley, Cabbage, Wheat, Barley, Rye, Oats, Grain maize, CCM, Faba beans, Soya beans, Protein peas, Sunflowers, Rape seed
Co-product: Straw
Product treatment: Grain drying, Potato grading
Direct and indirect emissions
Global warming potential of Swiss arable and forage production systems

T. Nemecek | © Agroscope Reckenholz-Tänikon Research Station ART

Source: FAL report 58 (2005)
Global warming potential of Swiss arable and forage production systems
T. Nemecek, Agroscope Reckenholz-Tänikon Research Station ART

Burgrain farming systems
Contribution of GHG

Source: FAL report 58 (2005)

Burgrain farming systems
Contribution of inputs and processes

Source: FAL report 58 (2005)
Organic arable crops: Need for improvement

Global warming potential of Swiss arable and forage production systems

-60% -40% -20% 0% 20% 40% 60%

winter wheat winter rye winter barley spring barley grain maize potatoes faba beans soya beans protein peas rape seed carrots cabbage

Source: FAL report 58 (2005)

Organic forage production: Slightly lower GWP

NEL: net energy for milk production
fa int = fairly intensive

Global warming potential of Swiss arable and forage production systems
T. Nemecek | © Agroscope Reckenholz-Tänikon Research Station ART
Conclusions (1)

- Organic farming system as a whole: lower global warming potential (GWP)
 - Less nitrous oxide (no mineral N fertilisers, lower N inputs)
 - Less carbon dioxide (no mineral N fertilisers)
- Advantages bigger per ha (25-37%) than per kg (6-20%), due to lower organic yields
- Higher GWP for several organic products from arable crops

Conclusions (2)

- Options to reduce GWP in organic farming:
 - Increase yields
 - Use the machinery efficiently
 - Implement minimum tillage techniques
 - Reduce nitrogen losses contributing directly (N₂O) or indirectly (NH₃, NO₃, NOₓ) to the GWP
- Methodical aspects:
 - Consider farming systems as a whole
 - Life cycle perspective is crucial
 - Do not focus only on global warming